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Performance characteristics obtained from particle simulations using the direct implicit 
method are presented. Parameter studies of simulation behavior for an expanding plasma slab 
have been made determining code performance as functions of opp At and Ax/l,,, where op 
is the plasma frequency, I,, is the electron Debye length, At is the time step, and Ax is the 
grid spacing. A range of time steps wpc At < 200 and mesh sizes Ax/& < 100 were explored. 
Accurate results for low-frequency phenomena resolved by the time step can be obtained 
without limit on wpp At in this range (and higher) with a careful choice of algorithms. This 
choice of algorithms defeats a potential nonlinear instability that occurs when (wF At)2 
exceeds the number of particles per cell. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

Implicit time integration schemes allow for the use of larger time steps than con- 
ventional explicit methods, thereby extending the applicability of kinetic particle 
simulation methods. This paper describes a study of the performance and optimiza- 
tion of direct implicit schemes, which are used to follow the trajectories of charged 
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particles in an electrostatic, particle-in-cell plasma simulation code. One of the prin- 
cipal goals of this study is the optimization of direct implicit algorithms that are 
suitable (i.e., efficient, robust, and accurate) for implementation in both l- and 
2-dimensional applications. The time differencing schemes that are studied were 
developed and analyzed by Langdon [ 11, and by Cohen, Langdon, and Friedman 
[2]. Some of the spatial differencing issues were introduced by Langdon, Cohen, 
and Friedman [3]. The direct implicit method that was used for this study is an 
alternative to the implicit moment-equation method developed by Mason [4] and 
Denavit [S]. 

The organization of this paper is as follows: Section 2 presents the formulation 
of two time differencing schemes, as well as the incorporation of these schemes into 
the particle simulation code. Section 3 presents the results of a numerical stability 
study of these schemes. This study is based upon the energy conservation, or lack 
thereof, of a freely expanding plasma slab in various regions of wpe At, Ax/&,, 
parameter space, where mpe is the electron plasma frequence, A,, is the electron 
Debye length, At is the time step, and Ax is the grid spacing. Section 4 discusses 
avoiding a nonlinear numerical instability when (mpe At)* exceeds the number of 
particles per cell. Finally, Section 5 summarizes the results of this study. The 
experience acquired in this study leads to a choice of algorithms and operating 
parameters for use in I- and 2-dimensional applications that is efficient, robust, and 
accurate. 

2. THE DIRECT IMPLICIT ELECTROSTATIC PARTICLE CODE 

2.1. Direct Implicit Time Integration 
The two implicit time integration schemes that were used for this study were 

chosen for their desirable properties. The most important of these are (i) the relaxa- 
tion of w At constraints on the stability of the method, (ii) strong damping of high- 
frequency modes for which o At 2 1, and (iii) the second-order accuracy of the 
methods in the simulation of low-frequency phenomena for which w At 5 1. These 
properties were originally studied through the normal-mode analysis of an elec- 
trostatic, cold-plasma oscillation in which the electrons undergo simple-harmonic 
oscillations [2]. The present study deals with one scheme from each of the C 
and D classes of schemes that are discussed in [2]. We now briefly review the 
description of the C, and D1 schemes. The “optimized C, scheme” is given by 

X ll+1= $I+* +(w-b+I+clan) (14 

2x:,+x:,-, 
Ax2 =a, (lb) 

with c0 = 0.302 and cr = 0.04, where x is the particle displacement, x’ is the leapfrog 
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displacement, and a is the acceleration.’ The subscripts indicate the time step level 
of the variable. The “D1 scheme” is given by 

vn + l/2 - V” - l/2 1 
At =p+l+ 

vn - l/2 - vn - 312 

2At ’ 

X IIf1 -XII 

At = V” + l/29 (3) 

where v is the particle velocity. 

2.2. General Results and Properties 
It was shown in [2] that relaxation of the o,, At stability constraint in plasma 

simulation required the use of an implicit time integration scheme. This means that 
temporal resolution of the plasma frequency is forfeited to simulate lower frequency 
phenomena efficiently. This is particularly useful if the phenomenon of interest for 
the simulation is on a much slower time scale than that of plasma oscillations. 
Therefore, a time step that encompasses several plasma oscillation periods may be 
used in long time-scale simulations while the scheme remains numerically stable. 
The coefficients that are used in the time integration schemes determine the degree 
of implicitness, the degree of high-frequency mode dissipation, and the stability of 
the scheme. When o,, At 9 1, the high-frequency oscillations cannot be represented, 
even though the scheme remains stable. Therefore, the scheme should damp out 
these modes, while not affecting the low-frequency modes which are of interest. The 
1.~1 for the least damped simple-harmonic oscillator normal mode is plotted as a 
function of 0: At’, for both the Ci and D, schemes in Fig. 1. The figure shows that 
the damping for the D, scheme is stronger, and begins at smaller values of oO At, 
than that for the C, scheme. This is due to the fact that the only acceleration used 
in (2) is a, + i, indicating that the D, scheme attempts to force charge neutrality in 
only one time step as At + co. In contrast, the Ci scheme uses acceleration data 
from several previous time steps. In l-dimensional implementations, the Ci scheme 
requires that one more particle-length array be stored than does the D, scheme. 
The accuracy of the two schemes at low frequencies was discussed in [a]. The weak 
damping of low-frequency oscillations indicated in Fig, 1 yields high accuracy 
simulations in the “explicit” regime wO At < 1. 

2.3. Electrostatic Field Equations 
In general, the direct implicit time integration schemes give the new particle 

position as 
X n+I=BAt2an+,+% (4) 

’ For multistep schemes of the form (la)-(lb), and for oO At + co, P.-A. Raviart has shown 
analytically that the three normal modes have equal damping, given by ]z] = ]exp( -io Ar)l = f, when 
8c, = c,, = 8/27. These values agree with those obtained by Cohen er al. [3] that minimized the value of 
121 for the least stable root, to within the accuracy of their numerical determination. 
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FIG. 1. The absolute value of IzI = lexp( -iw dr)l of the least damped simple-harmonic oscillator 
normal mode versus ~6 At* in the C, scheme (dashed line) and the D, scheme (dashed-dotted line). 

where 0 < fi 6 1 is a constant of the time integration scheme and 1 is the explicitly 
computable “free-streaming” particle position, which is independent of a, + i, In an 
electrostatic code [3], a,, , is due only to E, + i. 

The new position x,, , may be thought of as the explicitly computable position 
j2 plus a displacement 6x = /I At’s,,, 1. The charge density is then taken as the sum 
of p depending on the positions of %, plus a linearized correction term due to the 
displacing of the particles by the amount 6x = x,, , - j2, which is equal to 

6p = -v . [P(x) 6x(x)]. 

The linearized displacement term 

Sx(x)z/l At2qE,+,/m 

then gives 

(5) 

(6) 

b(x) = -V. Cx(x) En, ,I, (7) 
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where the implicit susceptibility is defined by 

x(x) = PCc!P(xYml = Be% w*. (8) 

(These expressions have been generalized to the relativistic case [6] and implemen- 
ted in our computer code TESS, which stands for tandem experiment simulation 
studies). Poisson’s equation is modified by the addition of this susceptibility to 
become, in rationalized cgs units 

V.Erz+I =P-V.(dL+,) (9) 

or 

-V~[l+XlV~,+,=P. (10) 

This form of the field equation depends only upon the particle position x, + i, as 
opposed to the implicit moment-equation method which also requires particle 
velocity information [4, 51. 

The TESS code uses a simplified finite difference form of (lo), which in the 
absence of local spatial smoothing is given by [3], 

-Cl +Xj+I/*l(#j+I-#j)+ Cl +Xj-1/21(~j-~j--1)=~jjx2, (11) 

where 

Xj+l/2=(Xj+Xj+1)/2 (12) 

is a midpoint implicit susceptibility. This choice is motivated by the consideration 
of nonlinear stability described in Section IV. Other choices for xi have been used, 
including the maximum of the adjacent gridpoint values of x. In the simulation of 
long time scale phenomena, it is desirable to have a value of 0; At* b 1, which 
means that [ 1 + x] >> 1, such that the field equation is substantially different from 
Poisson’s equation, which is the explicit limit of (10) for wi At* G 1. 

The analogous field equations for the 2-dimensional implicit electromagnetic par- 
ticle code AVANT1 are similar in philosophy, but considerably more complicated 
in form [7]. This complexity strongly motivates a simplified spatial differencing 
scheme to streamline the resulting matrix equations. The stability and accuracy of 
simplified differencing is studied here in an electrostatic implementation. 

3. DIRECT IMPLICIT METHODS PERFORMANCE STUDY 

The performance of the C1 and D, time integration schemes, as a function of 
location in mpe At, Ax/&, p arameter space, was analyzed for the collisionless 
expansion of a l-dimensional, sharp-boundary plasma slab into a vacuum. The free 
expansion of such plasma slabs has been previously discussed by Denavit [S, 81, 
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including a comparison of particle simulation results to a self-similar solution which 
assumes charge neutrality, isothermal electrons, and cold ions. As the plasma 
expands into the vacuum due to the velocity of the particles, a rarefaction wave 
propagates into the plasma slab at the ion-acoustic speed c,. The plasma density 
behind the wavefront falls off exponentially, and the ions are accelerated outward 
according to the velocity profile 

Uf = c, + (x - x,)/t, (13) 

where II,. is the velocity of the ions in the rarefaction wave, x0 is the location of the 
initial density discontinuity, and x is the location of the ions in the rarefaction at 
time t. Figure 2 shows the electron and ion phase-space plots for a typical 
expanding slab. The dashed line on the ion phase-space plot (Figure 2b) represents 
the self-similar ion front velocity as given by (13). The agreement between the self- 
similar and particle simulation ion front velocities shown in Fig. 2 was seen earlier 
in [8]. 

Freely expanding plasma slab simulations were made for various combinations of 

1. I  I  1 I  . I  

0 20 40 60 60 100 
Axial posltlon (cm) 

0 20 40 60 60 100 
Axial position (cm) 

FIG. 2. Phase space distributions for (a) electrons and (b) ions in the freely expanding plasma slab. 
The initial density discontinuity was located at x0 = 30.0 cm. The ions in the expansion region are 
accelerated due to the self-electric held. Note the agreement between the self-similar and particle simula- 
tion ion front velocities. 



IMPLICIT PARTICLE SIMULATION 157 

the important simulation parameters ape At and Ax/&,, in the range 
0.1~ mpr At < 200 0.1~ Ax/l,, < 100, excluding the region for which o, At/Ax > 2, 
where 0, = J-- TJm, is the electron thermal speed. Several input parameters were the 
same for each of the simulations. These include the number of particles (2048 of 
each species), the mass ratio (mi/me = 900), the temperature ratio (TJT, = lo), the 
system half-width (L = 100 cm), the initial plasma slab half-width (Lslab = 30 cm) 
and the mesh size (Ax= L/128 = 0.7843 cm). The values of mpe and Ax were the 
same for each of the simulations, while the temperature of the species (and hence 
A,,,) and At were varied. 

In an attempt to quantify the performance of the two time integration schemes 
in various regions of mpe At, Ax/l,, parameter space, we employ the quantity 
(AE/E,,)/N, where AE is the change in the total plasma energy (kinetic plus elec- 
trostatic) through N time steps, normalized to the initial value of total plasma 
energy Eo. Figure 3 shows a typical time history of the total plasma energy for a 
simulation that resulted in numerical heating of the plasma. The freely expanding 
slab should exactly conserve energy, since the kinetic energy of the hot electrons is 
simply transferred to the cold ions through the self-electric field, resulting in the 
acceleration of the ions which was observed in Fig. 2b. However, since the implict 
algorithms described here are inherently dissipative, energy is not necessarily con- 
served. Some possible causes or mechanisms of non-conservation of energy include 
(i) stochastic self-heating effects [9-111, (ii) self-heating effects arising from the 
interaction of spatial aliases, which are a consequence of the discrete nature of the 
grid, with the velocity distribution function of the particles [ 121, and (iii) numerical 
heating and cooling due to the dissipative nature of the implicit time integration 
scheme [Z, 131. This section presents the results of a study of the dependence of 
energy conservation on o,,, At and Ax/J.,, using the C, and D, implicit time 
integration schemes. 

A set of 35 simulations were run for various combinations of oPe At, Ax/l,, 
which span the aforementioned space. These runs were made using the C, and D1 
schemes, both with an without one-pass, local, self-consistent digital smoothing of 
(10) as described in detail in Section 3.3 of Langdon et al. [3]. The spatial smooth- 
ing that was applied was of a simple, three-point (1,2, 1) form. It was therefore also 
possible to study the effect of spatial smoothing on the non-conservation of energy. 

x 106 

0.2 0.4 0.6 0.6 1.0 
I- 

Time (set) x 10-S 

FIG. 3. A typical time history plot of the total plasma energy for a simulation that resulted in 
numerical heating of the plasma. 
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The energy conservation results for these runs are given in Tables I and II for the 
C, scheme with and without spatial smoothing and in Tables III and IV for the D, 
scheme with and without smoothing, respectively. The data from these tables is 
shown in the contour plots of Figs. 4 through 7. 

The zero contour line on these figures indicates exact energy conservation, while 
positive (negative) contour lines indicate numerical heating (cooling) of the plasma. 
(The positive contour lines are solid, the negative contour lines are dashed, the zero 
contour line is the bold solid curve and the u, At/Ax = 1 line is the bold dashed 
line). The filled circles show the locations in mpe At, Ax/l,, parameter space at 
which the simulations were run. The coarse nature of the contour lines is due to the 
limited number of runs in the simulation set. The space could be extended to larger 
values of the two parameters, but the cost of each run increases rapidly as Ax/~,, 
is increased, due to the decreasing particle thermal velocity, which in turn requires 
a greater number of time steps for a uniform expansion of the slab among of all of 
the runs. 

+2 

I 5 

i 

tl 

t 

apex At 

Min =-5.7547e-04 
Max= 3.0535e l 00 

1 

FIG. 4. Contour plots of (dE/&,)/N as a function of w,dr and Ax/l,, for the C, scheme without 
spatial smoothing. The zero contour indicates exact conservation of energy. 
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Min =-5,7663e-04 
Max= 6.7 176e l 00 

c 

wpemAt 

J I 
f 

FIG. 5. Contour plots of (BE/&)/N as a function of mpe At and Ax/&, for the C, scheme with 
spatial smoothing. The zero contour indicates exact conservation of energy. 

Explicit particle simulation codes are usually limited to operation in the lower 
left hand region above the bold dashed line [9-111. The direct implicit method 
greatly extends this region of operation. The figures indicate that it is possible to 
use large values of mpe At and Ax/l,, which result in negligible or no loss of energy 
conservation. Therefore, one may increase the cost effectiveness of the simulation by 
employing a time step which is larger than the electron plasma period, while 
accurately simulating the low-frequency phenomena of interest, such as MHD (in 
implicit electromagnetic codes) and particle transport. It must be stressed that the 
results presented here are applicable for either periodic plasma systems or systems 
in which the plasma is not in contact with a wall. The effect of potential sheaths 
near a surface may yield different conclusions regarding regions of numerical 
heating and cooling than those presented here. 

The contour plots for the C1 scheme, Figs. 4 and 5, show that energy is conserved 
up to maximum values of Ax/l,, z 3 and op, At z 1. For larger values of these 
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Min =-6.8480e-03 
Max= 1.5441e-01 

FIG. 6. Contour plots of (M/&)/N as a function of oPp Af and Ax/L,, for the D, scheme without 
spatial smoothing. The zero contour indicates exact conservation of energy. 

parameters, there is numerical heating, while smaller values lead to numerical cool- 
ing of the plasma. The addition of local spatial smoothing allows the zero contour 
line to extend to slightly larger values of the two parameters. Smoothing also 
reduces the numerical heating at large values of Ax/A,, by about a factor of 4. The 
data points at wpe At = 200, Ax/&,, = 100 are subject to very rapid numerical heat- 
ing with the Ci scheme. Spatial smoothing increases the heating rate at this point, 
which is the opposite effect to that seen in other regions of the parameter space. 

In contrast to the contour plots for the C, scheme, Figs. 6 and 7 indicate that 
there are regions in the space with large values of mpe At and Ax/&,, for which the 
energy of the system is conserved well when the D, scheme is used. The zero con- 
tour line lies approximately parallel to the u, At/Ax = 1 (bold dashed) line, and 
extends out to mpe At x 30, Axfl.,, = 100 following a path described approximately 
by u, At/Ax z 0.3 f 0.1 for o,,~ At 2 1, m,/m, = 900, and T,/T, = 10. This behavior 
may continue to larger values of the two parameters, which would allow for very 
large time step simulations in which numerical heating and cooling are not signifi- 
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-- -- -- 
/ 

2 
Min =-7.1246e-03 

E Max= 9.4762e-03 

FIGURE 7. Contour plots of (dE/E,)/N as a function of oPp At and Ax/&,, for the D, scheme with 
spatial smoothing. The zero contour indicates exact conservation of energy. 

cant. Note that there is a very rapid rate of change in (AE/E,)/N about the zero 
contour line, especially for oPe At 2 1. Spatial smoothing yields approximately a 
factor of 5 reduction in the numerical heating at large values of Ax/l,,. 

4. NONLINEAR INSTABILITY 

To this point we have been concerned with the performance (specifically energy 
conservation) of the direct implicit scheme in a rather idealized environment. We 
have tested several schemes in anticipation of the need to increase time step and 
reduce grid resolution as our interests turn to larger problems and higher dimen- 
sionality. Another concern is that the algorithm would become less robust or 
perhaps nonlinearly unstable when attempting to simulate plasmas with large fluc- 
tuations due to few particles per cell-a strong temptation as problem requirements 
increase. 
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Now we report experiments with several variants of the scheme in an effort to 
determine the limitations as the plasma representation becomes more coarse, with 
the aim of isolating those forms most suitable for extension to a 2-dimensional, 
electromagnetic code. In the work reported here, we selected a number of the 
simpler, though less rigorously justified, algorithms. Most of the variants were 
eliminated by tests on the same expanding slab problem, which features initially 
sharp gradients, a large range of density, and parameters that stress the lineariza- 
tion on which the field predictor is based. Local fluctuations are frequently the 
cause of such stress due to the large fields produced by motion of isolated, 
individual particles representing too many real particles. Such situations may occur 
when too few particles per cell N, are used and always occur in regions of low 
density near a sharp plasma gradient. The surviving algorithms are as simple as any 
that have been proposed, yet are (so far) more robust than we expected. 

Our tests used values of mpe At as large as 200, much larger than have been 
reported previously [14, 15, 51. With the larger values of w,,~ AC, some algorithms 
exhibited nonlinear numerical instability when (mpe At)* exceeded N,, where N, is 
the number of particles per cell (in one dimension, N, = n Ax). Many applications 
of 2-dimensional explicit codes require only that N, 2 10. If the nonlinear instability 
were not circumvented, we would need more than (wpe At)* particles per cell, which 
would be a severe limitation. 

In this section we detail the method that works best and explain why other 
variants are less robust. 

Several suitable schemes for time-differencing the particles have been analyzed 
and applied [2]. We consider only the “Di” scheme, here written as 

x,+1 --%I 

At = VII + l/2 

v,+1/2-vn-l/2 V” + l/2 + V” - l/2 x qB, 

At 
=a,+ 

2 mc ’ 

UW 

(14b) 

where 

%=X%--l+an+ll, (15) 

a is the acceleration due to the electric field only, and n is the time level. The 
variables x, v, and a are quantities associated with each particle. 

The direct-implicit method is used here in the following l-dimensional, 
unmagnetized, electrostatic algorithm. The position x,, 1 of a particle at time level 
t n+l, as given by (14), can be written as Eq. (4) with /I = 3 for the D, scheme, and 
Z,,, 1 is the position obtained from the equation of motion with the acceleration 
a n+l omitted; Z.n+l=~,+~,-1,2 At + $i- 1 At* is known in terms of positions, 
velocities, and accelerations at times t, and earlier. In its simplest form, which we 
adopt here, the direct implicit algorithm is derived by linearization of the particle 
positions relative to Zn + i. 
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At the grid point located at Xi, the charge density Pj,n+, is formed by adding the 
contributions of the simulation particles at positions {Z-i,n + , } interpolated to the 
mesh, 

Pj,n+l =C 4is(xj-zi,n+1), (16) 

where Xi = j Ax, Ax is the grid spacing, i is the particle index, qi is the charge, and 
S is the particle-grid interpolation spline. With this extrapolated charge density and 
the linearized implicit contribution -~(~E)/c?x, the field equation can be written in 
the form of (11) or as 

where x(x) = C @(x)(q/m) At2 summed over species, i.e., x = #?(a, At)2. We call x 
the implicit susceptibility, because of the similarity of (11) and (17) to the field 
equation in nonuniform dielectric media. Note that x % 1, where oP At is large. The 
two representations used here are (12) and 

(18) 

where 

Xj=At’C BP, s [ ,.n+l x] (19) 

is a sum over species index s. 
In terms of the field 

Ej,n+l =4CEj-l,2,n+l+Ej+,/2,n+ll (20) 

formed from values of E at the half-integer positions, the particle acceleration is 
evaluated at Z,,+ i by an interpolation of the form 

miai,n+ 1 =qiAx 1 Ej,n+lS(xj-zi.n+1), (21) 
i 

where the sum is over grid points j and S is the same spline function used in (16). 
(We have chosen not to include spatial smoothing, because the resulting loss of 
resolution may be too costly in two dimensions and because smoothing makes the 
field equation more expensive to solve.) 

Two parameters measure the stress on the algorithm: The more important 
parameter is x, = fiq* At2/m lAxI, where q and m are the particle charge and mass, 
and IAxl is the zone volume. This is a worst-case measure of the validity of 
linearization in the field prediction, as stressed by short-wavelength sampling fluc- 
tuations in the charge density. Written as jI(w, At)2/N,, this parameter, x1, is seen 
to be greater than unity when /?(w,, At)2 > N,; its significance is mentioned above. 
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The second parameter is v, At/Ax, the ratio of thermal electron transit distance 
per cycle to the zone size. Although a direct-implicit code is stable with 
v, At/Ax > 1, energy conservation is degraded without use of spatial smoothing. 

Depending on the differencing of the field equation, the ratio (x, + i - I, + ,)/Ax, 
a measure of the validity of linearization in the absence of smoothing, can be as 
large as j3 At’(q*/m)/ 1 AxI = 1, due to the field of a single particle, in regions of large 
density gradient or low density. It is essential that a particle contribute enough to 
the x’s multiplying all the { Ej+ ,,* } that accelerate the particle and its neighbors in 
the same zone, so that the x’s are big enough to ensure that the electric fields and, 
hence, the accelerations do not become too large. The choices (12) and (18) work 
well in the test problems considered. However, in the momentum conserving algo- 
rithm [16; 13, Section II.C.21, the formation of x must be more “local” than it is 
in (12) and (18) (that is, a particle must contribute to fewer x’s). With algebraic 
momentum conservation in any form attractive for extension to two dimensions 
and electromagnetic fields (i.e., using neither spatial filtering, iteration, nor “strict” 
formulations of the field predictor (in the sense given in [ 1; 2])), we have not been 
able to run with x, 2 1. When these simulations fail, electric fields become large 
typically in the regions of low density: particles are accelerated to high energies and 
can cross many cells in one time step. 

With the formulation outlined here, we have obtained reasonable results with x1 
well over 100, which considerably reduces the required number of particles per cell 
when (mpe At)* is large. In Table V we summarize the numerical results for a series 
of simulations testing nonlinear stability using the D, scheme with simplified dif- 
ferencing and x,+ ,,* g iven by Eq. (12). The simulations uniformly cool and remain 
stable for all values of xi used, 0.0125 d x, < 20. The cooling observed here is 
qualitatively consistent with the results at different values of x, shown earlier in 
Fig. 6 for Ax/l,, = 20,~ At, which data follows a contour lying below the solid line 
along which energy is conserved. 

TABLE V 

Energy Conservation (dE/E,,)/N for the D, Scheme without Spatial 
Smoothing in wpe dr, Ax/l,,, and x, Parameter Space 

cope At = Ax/(24,,) 

XI 0.2 2.0 20.0 

20.0 -1.3 x 1o-3 A.9 x 10-j 
2.0 -3.1 x 10-a -1.5 x 1om3 -7.7 x 1o-3 
1.25 -1.4 x 10-j -7.5 x 1om3 
0.2 -1.8 x 1o-4 -9.6 x 10 -’ 
0.125 -7.1 x 1o-4 -7.4 x 1o-3 
0.0125 -9.8 x 10-S -2.7 x 1O-4 
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5. SUMMARY 

The Cl and D, direct implicit time integration schemes have been shown to 
extend the region of operation for which the total plasma energy is conserved 
beyond that which is applicable for an explicit time integration scheme. The C, 
scheme was found to have a limited region of parameter space over which energy 
is well conserved. The D, scheme possesses a much larger region of parameter space 
for good energy conserving operation. In fact, for the range of parameter space con- 
sidered, the D, scheme was shown to conserve energy well along a path described 
by u, At/Ax - 0.3. This guideline has served well in 2-dimensional electromagnetic 
applications of AVANT1 [7] for a wide range of parameters. Numerical heating 
was found for large values of Ax/&, with each of the schemes. The amount of heat- 
ing in a given region of the space was found to be comparable between the two 
schemes, with the D1 scheme heating slightly less than the C, scheme. Numerical 
cooling of the plasma system was found for the lowest values of the parameters in 
the space, except when the D, scheme was used with local spatial smoothing. 
Spatial smoothing generally yielded a factor of 3 to 4 reduction in the amount of 
numerical heating, and a slight decrease in the amount of numerical cooling relative 
to the same simulation run without smoothing. The smoothing did not substan- 
tially alter the gross topology of the energy conservation plots. 

We note with interest that the guideline of u, At/Ax - 0.3 for the direct implicit 
algorithm falls in the middle in the range O(lO-‘) < u, At/Ax < O(1) determined 
empirically by Brackbill and Forslund [17] in order that the implicit moment 
method for particle simulation gives stable and accurate results. Brackbill and 
Forslund found that the lower limit is associated with the onset of the finite grid 
instability and the upper limit results from the deterioration of the accuracy of the 
particle trajectories. 

If low-frequency phenomena are of interest, as opposed to high-frequency effects, 
the large degree of high-frequency damping provided by the D1 scheme (see Fig. 1) 
allows the use of time steps that encompass several electron plasma periods. The 
o, At time step constraint is thereby relaxed, resulting in an increased cost effec- 
tiveness of the simulation. For such simulations, the D, scheme is more desirable 
for use than the C1 scheme. Since the energy conservation contour plot for the D, 
scheme has a steep gradient about the energy conserving contour, care must be 
taken to ensure that the operation point is chosen as close to the energy conserving 
contour as possible. 

Code experience with C1 and D, time differencing schemes, with strict and sim- 
plified spatial differencing [18], and with and without momentum conservation 
[ 16, 18 3 also indicates that some forms of the direct implicit algorithms are suscep- 
tible to a nonlinear numerical intability that can occur when (mpe At)* exceeds the 
number of particles in a cell. However, algorithms with simplified spatial differenc- 
ing and without momentum conservation do not exhibit the nonlinear instability 
for values of (o,,, At)2 greatly exceeding the number of particles in a cell. Hence, we 
advocate use of the D, scheme with simplified spatial differencing as described here 

581/81/l-12 
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in Section 4. This is being successfully pursued in 2-dimensional electromagnetic 
applications [7]. 
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